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Abstract  
The objective of the present study was to examine alternative approaches for 

deriving the weights to be assigned to different performance measures in 

diagnosing ADD and dyslexia. These performance measures were obtained 

from a new standardized test battery for the diagnosis of learning disabilities 

(MATAL).  

Two different statistical methods were applied and two definitions were used 

to demarcate the groups being analysed. These approaches were compared 

to each other on the basis of the classification accuracy of the prediction 

equations they yielded. The approaches were found to be highly accurate. 

However, this high level of accuracy should be attributed primarily to the large 

number and careful selection of the performance measures included in the 

analyses, rather than to the specific weights assigned to them by the different 

approaches. Additional data, especially with respect to dyslexia, is needed in 

order to establish any further conclusions. 

 

Introduction 
The diagnosis of learning disability (LD) is a highly complex task. In a typical 

clinical situation a battery of 10-20 achievement and cognitive tests is 

administered to a given subject and 20-40 measures may be computed to 

indicate performance level. To arrive at a final diagnosis, the scores on these 

measures – together with other measures such as medical and learning 

history, school reports etc. – are combined on the basis of clinical judgment.  

Though clinical judgment of dozens of performance outcomes may be an 

adequate procedure in a clinical setting (which focuses mainly on the 

identification of strengths and weaknesses for the purpose of designing an 

assistance or rehabilitation plan), it is highly inappropriate in a diagnostic 

setting aimed at determining eligibility for test accommodations or for financial 

aid, a context in which standardization and objectivity must not be 

compromised. Moreover, the superiority of statistical models versus clinical 

models in decision-making has long been established in the field (Dawes, 

1979; Dawes, Faust, & Meehl, 1993).   
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The current study compared various approaches for constructing a statistical 

decision-making model for combining scores on a new standardized test-

battery for the diagnosis of learning disabilities (MATAL).  

MATAL is a computer-based test battery for the diagnosis of learning 

disabilities of students in higher education (Ben-Simon, 2005; Ben-Simon, 

Beyth-Marom, Inbar-Weiss, & Cohen, 2008). MATAL was developed jointly by 

the National Institute for Testing and Evaluation and the Council for Higher 

Education in Israel. One objective of MATAL is to determine eligibility for 

accommodations in admission tests for higher education and in 

university/college course exams. Another objective of MATAL is to determine 

the nature of the support required to assist LD students in their academic 

studies. MATAL consists of 20 tests in various cognitive domains. A total of 54 

performance measures are derived from these tests and used to determine 

the existence and severity level of a learning disability. The development 

process of MATAL included a validation study, which was based on 205 

subjects (110 subjects with one or more learning disabilities and 95 not-

disabled subjects), followed by a norming study, which included 508 not-

disabled subjects. The results obtained from these two studies were used to 

generate a statistical model (the "operational model"), which is currently used 

for the diagnosis of four major disabilities (dyslexia, dyscalculia, dysgraphia 

and Attention Deficit Disorder1 (ADD)). The weights attached to the different 

performance measures in this model were estimated on the basis of a logistic 

ridge regression model for predicting the relevant disability. The model was 

optimized on the number of explanatory variables and the ridge coefficient 

(Wahba, 1990).   

The objective of the present study was to examine alternative approaches for 

deriving the weights to be assigned to the different measures. These 

approaches differed from one another in terms of both statistical method 

employed and the definition given to demarcate the two groups being 

analysed. The analyses presented below are limited to the diagnosis of two of 

                                                 
1For the sake of accuracy it should be noted that Attention Deficit Disorder (ADD) is regarded 
as a cognitive disorder and not as a learning disability.   
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the four disabilities mentioned above, ADD and dyslexia, which are by far the 

most common disabilities in the current context. 

 

Objectives of the study 
(and procedures for implementing them) 

Figure 1 presents a mapping sentence which describes the objectives of the 

study and comprises three facets. Following it is a description of each of the 

three facets with the elements specified in it. Methodological notes are offered 

where necessary to clarify technical issues regarding the implementation of 

the procedures designed for achieving the objectives of this study.   

 
The aim of the present study is to examine models for diagnosing disability, using the 

methods of 

 

 

 

 

 

 

 

 

Figure 1: Mapping sentence and facet definitions for the objectives of the study 
 

Facet A: The statistical method  
In order to place examinees into categories on the basis of the battery of 

measurements, two statistical methods were applied: logistic regression and 

linear discriminant analysis. Both techniques deal with data representing 

multiple (continuous or categorical) independent variables (in the present 

application – a relevant subgroup of the performance measures of MATAL) 

and a single categorical dependent variable (being disabled or not, with 

respect to a specific learning disability2).  

 

                                                 
2 The dependent variable has two categories. It should be noted that in such a two-group 
classification problem linear discriminant analysis is analogous to multiple regression 
analysis, with binary coding for the groups as the dependent variable. 
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Logistic regression (LR) 

In LR we model the probability ( P ) that a case belongs to a particular group: 

pp

pp

XbXba

XbXba

e
eP +++

+++

+
= ...

...

11

11

1
, with pXX ...1 predictor variables. The criterion for selecting 

the coefficients a  and pbb ,...,1   is maximum likelihood, according to which,  

the coefficients that most closely reproduce the actual placement of cases into 

categories are selected. 

  

Linear discriminant analysis (LDA) 

In LDA we model a linear function pp xkxkt ++= ...11 , called a discriminant 

function3. The coefficients are selected in such a way that the scores of the 

members of the two categories on this function t  (discriminant scores) exhibit 

the property of maximizing the ratio of between-groups and within-groups 

variability.    

 

Thus, each of the methods yields a predicted score (a probability in the case 

of LR and a discriminant score in the case of LDA), on the basis of which 

group membership is predicted. The selection of a specific cutoff point on the 

predicted score for classification decisions will be discussed later. 

 

Methodological note 
The products of LR and LDA will be evaluated in reference to two alternative procedures for 

combining the scores on the independent variables:  

1. "equal weights": combining the scores via summation with equal weights. 

2. "operational weights": combining the scores via a logistic function with the operational 

weights (the weights which are currently used for diagnosis). The operational weights are 

ridge estimators applied to LR, which are obtained by maximum likelihood of a penalized 

model. According to Intrator (2008) "The penalty often takes the form of a ridge coefficient 

multiplied by the norm of the weights. Thus, the model is constrained to produce best 

prediction or maximum likelihood subject to a small norm constraint".  

 

 

 

                                                 
3 t and ix are written in lower-case letters since they are expressed as deviations of mean. 
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Facet B: The disability diagnosed  
Each statistical analysis was conducted twice, once for diagnosing ADD and 

once for diagnosing dyslexia.  

The dependent variable (criterion) was whether or not the respective disability 

was found. The independent variables (predictors) were those included in the 

operational equations. 17 predictors were used for diagnosing ADD and 15 for 

diagnosing dyslexia. 

 

Methodological note 
The decision regarding the inclusion of predictors in the operational equation was based on 

theoretical as well as empirical considerations. Specifically, the process began with a 

prediction equation which included all the 54 indices derived from MATAL. Then, indices 

which were irrelevant to the disability under consideration and/or appeared with small weights 

in the equation were omitted. An iterative process of selection of predictors followed, whereby 

different combinations of predictors were examined for the classification accuracy they 

yielded. The final aim was to obtain a maximal level of classification accuracy while retaining 

a theoretically acceptable combination of predictors (Ben-Simon, 2008). 

 

Facet C: The groups involved  
The models generated by the two statistical methods were estimated on the 

basis of two groups: disability group versus no-disability group. The elements 

in this facet differ in the definition used to demarcate these two groups: in the 

first element the two groups are defined as "mixed" and in the second 

element they are defined as "pure." 

  

"Mixed" groups 

The definition of the two groups as "mixed" means that the group of disabled 

examinees was composed of all those having the relevant disability, including 

cases with additional disabilities as well; and the group of not-disabled 

examinees was composed of "all the others" (i.e., including those with no 

diability at all, or those with one or more disabilities, other than the relevant 

disability).  
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"Pure" groups 

The definition of the two groups as "pure" means that the group of disabled 

examinees was composed of cases of the relevant disability only (i.e., with no 

co-morbidity) and the group of not-disabled examinees was composed only of 

cases of no disability at all. 

 

Methodological note 
Only cases with non-missing values on the criterion (disability) and all the relevant 
predictors were included in the analyses. 

 

As for the additional disabilities taken into account when defining the "pure" groups –  

dyslexia and dyscalculia were considered as additional disabilities when the criterion was 

ADD;   

ADD and dyscalculia were considered as additional disabilities when the criterion was 

dyslexia.   

Contrary to the treatment of cases with missing values on the predictors and the criterion, a 

case with a missing value on one of the additional disabilities was not omitted from the 

analyses. It was treated as not-disabled with respect to the disability under discussion.   

 

The classification accuracy of the model  
The models estimated by the two statistical methods in the two combinations 

of the groups involved were examined with respect to their classification 
accuracy. 

With regard to the measure of predictive accuracy (AUC - the area under 

ROC curve) adopted in the present study, two issues need to be addressed. 

First, the rationale for this measure will be presented, introducing some key 

concepts from the domain of binary classification. Second, the issue of 

deriving this measure by means of external versus internal classification 

analysis will be discussed. 

 

Key concepts: Sensitivity, specificity, ROC and AUC  

The concepts of sensitivity and specificity are often used to measure the 

performance of a classifier. 

Sensitivity is the probability that an examinee will be classified as positive 

(learning disabled) when he is indeed disabled; that is (true positives)/(true 
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positives+false negatives). The higher the sensitivity, the less real cases of 

disability will go undetected.  

Specificity is the probability that an examinee will be classified as negative 

(not-disabled) when he is indeed not-disabled; that is (true negatives)/(true 

negatives+false positives). The higher the specificity, the less incidence of 

not-disabled people being labeled as disabled.   

In signal detection theory, a receiver operating characteristic (ROC), is a 

graphical plot of the sensitivity vs. (1-specificity) for a binary classifier system, 

as its discrimination threshold (the cutoff point) is varied.  

Figure 2 shows three ROC curves representing excellent, good, and 

worthless predictors. The quality of the test, i.e., its discriminating power, is 

measured by the area under the ROC curve (often called AUC).  An area of 1 

represents perfect predictor; an area of 0.5 represents worthless predictor. 

Comparing ROC curves
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Figure 2: An illustration of ROC curves 

 

In order to understand what AUC really means, consider a situation where for 

the validation sample (i.e., where the true condition – disabled or not – is 

known) we randomly pick one observation from the disability group and one 

from the no-disability group and examine their predicted score (i.e., the 

composite variable estimated by LR or LDA). The observation with the higher 

predicted score should be the one from the disabled group (given that the 

direction of the scores on the composite variable is defined such that a higher 
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score is associated with the disability group). AUC is the percentage of 

randomly drawn pairs for which this is true4. 

 

Methodological note 
AUC was calculated as follows (Cortes and Mohri, 2003): 

mn
AUC

m

i

n

j yx ji∑ ∑= = >
= 1 1

1
, 

where mxx ,...,1  are the predicted scores for the disabled examinees and nyy ,...,1  are the 

predicted scores for the not-disabled examinees.   

 

Once a satisfactory ROC curve has been obtained, the remaining task is to 

determine the cutoff point above which a disability is predicted and below 

which non-disability is predicted. There is a variety of approaches possible for 

determining where this cutoff point is to be located. Generally, the approach to 

be ultimately employed should take into account the proportion of the two 

groups in the population in question and the relative cost and benefits of 

correct and incorrect decisions. 

 

"Internal" vs. "external" classification analysis 

In internal classification analysis the same sample is used for estimating both 

the classification function and its accuracy. However, to obtain a realistic 

estimate of the predictive accuracy of a given model, external rather than 

internal results should be considered. External classification analysis is one in 

which the data to be classified are not used in constructing the classification 

function.  

There are two ways of accomplishing this: 

a) The leave-one-out (Jackknife) procedure: Here each subject is classified 

based on a classification function derived from the remaining (n-1) subjects. 

This is the procedure of choice for small or moderate sample sizes. 

b) The split sample procedure: Here, the sample is randomly split (often 

equally) into model-building sample and validation sample. That is, we 

compute the classification function on the model-building sample and then 

                                                 
4 It has been shown that the AUC value is equivalent to the Wilcoxon-Mann-Whitney statistic 
(Hanley & McNeil, 1982). 
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check its hit rate on the validation sample. This procedure is suitable when the 

sample size is large.  

The samples available for the present study seemed rather small (especially 

the one representing the disabled group), therefore the leave-one-out 

procedure seemed more suitable. However, we decided to treat this issue 

with extra care, since applying the leave-one-out procedure to a not-too-small 

sample can result in a misleading optimistic picture regarding the external 

validity of the classification function. Therefore, the split sample procedure 

was applied in addition to the leave-one-out procedure.  

 

Results 
The numbers of observations on which the results are based are presented in 

Table 1. 

 

Table 1 

Number of observations in the analyses for ADD and dyslexia in the two 

combinations of groups involved 

Pure groups Mixed groups   

Not-disabled  Disabled Not-disabled  Disabled  

590 28 609 40 ADD

591 13 624 24 dyslexia

 

The values of AUC obtained by LR and LDA models are presented in Tables 

2a (for ADD) and 2b (for dyslexia). Three estimates of AUC are presented for 

each statistical method: one obtained by internal classification analysis and 

two obtained by external classification analysis. The AUC values obtained by 

the two alternative procedures for combining the scores on the independent 

variables - "equal weights" and "operational weights" - are presented as well. 

All the AUC values mentioned above are presented for both the "pure" and 

the "mixed" groups.   
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Table 2a 

Predicting ADD: 

AUC values obtained through LR & LDA and through operational & equal 

weights in "mixed" and "pure" groups  

  Mixed groups Pure groups 

  LR LDA LR LDA 

Internal analysis (optimal weights) 0.971 0.969 0.982 0.979 

Leave-one-out 0.911 0.946 0.946 0.962 External analysis 

(cross validation)  Split sample1 0.920 0.942 0.913 0.947 

Operational weights 0.958 0.978 

Equal weights 0.927 0.913 
1The values presented here are average values across the two halves of the sample. The 
results for each half of the sample separately are presented in the Appendix.  
 

Table 2b 

Predicting dyslexia: 

AUC values obtained through LR & LDA and through operational & equal 

weights in "mixed" and "pure" groups  

  Mixed groups Pure groups 

  LR LDA LR LDA 

Internal analysis (optimal weights) 0.995 0.986 0.996 0.991 

Leave-one-out 0.987 0.975 0.7542 0.978 External analysis 

(cross validation)  Split sample1 0.981 0.960 0.931 0.957 

Operational weights 0.981 0.983 

Equal weights 0.965 0.959 
1The values presented here are average values across the two halves of the sample. The 
results for each half of the sample separately are presented in the Appendix.  
2The validity of model fit is questionable. There are several data points which interfere with an 
optimal application of maximum likelihood estimation. 
 

Summary and conclusions 
The aim of the study was to examine the quality of the diagnosis of two 

learning disabilities – ADD and dyslexia – using two alternative statistical 

methods – LR or LDA – and two alternative compositions of the groups – 

"mixed" or "pure" – to which the statistical analyses were applied. The quality 

of the diagnosis was examined on the basis of its classification accuracy via 

external analysis. In what follows, the main findings with respect to the above 
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dimensions will be reviewed, with additional comments regarding the two 

alternative procedures – "equal weights" and "operational weights" – for 

combining the scores on the independent variables. 

 

The quality of the study5 weights  
Predicting ADD 

With respect to the statistical method, LDA yielded somewhat higher 

classification accuracy. This slight superiority of LDA should be evaluated in a 

context of inconsistencies in the literature which compared LR and LDA 

(Meshbane & Morris, 1996). LDA assumes, in most applications, multivariate 

normality of the predictors and equal population co-variances among the 

predictors for the groups (Huberty, 1994). LR, on the other hand, does not 

make these assumptions (Hosmer & Lemeshow, 2000). When the model's 

assumptions are satisfied LDA is often recommended. When assumptions 

underlying the LDA procedure do not hold, LR is often recommended. 

However, as mentioned above, the issue of the relative standing of LDA and 

LR regarding classification accuracy is still a matter of study and discussion 

(Lei & Koehly, 2003). 

With respect to the groups involved no clear-cut advantage to either 

approach was revealed. That being said, a slight advantage, in terms of 

classification accuracy, resulting from using "pure" groups, can be pointed 

out. In addition to this albeit limited advantage of the "pure" groups approach, 

there is another perspective that might be augmented. It can be argued that 

the approach of utilizing "pure" groups is theoretically more correct, and thus 

empirically more promising in practical applications. This claim stems from the 

fact that obtaining the weights from a sample that includes cases with co-

morbidity (i.e., both ADD and dyslexia) can cause an artificial correlation 

between the predicted score for ADD and the predicted score for dyslexia. In 

other words, when a predicted score is computed based on a sample with 

"mixed" groups, the resulting correlation between the predicted score for ADD 

and the predicted score for dyslexia is higher than the correlation which exists 

between the two disabilities in the population. To substantiate this point we 

                                                 
5 Defined by the dimensions presented in the mapping sentence in Figure 1. 
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compared the correlation between the predicted score for ADD and the 

predicted score for dyslexia in the two cases: when the weights were 

estimated in "mixed" groups and when they were estimated in "pure" groups. 

Both correlations were computed in the sample of (580) cases of no disability 

at all. The correlations obtained were 0.33 (when the weights were estimated 

in "mixed" groups) compared with 0.23 (when the weights were estimated in 

"pure" groups) when LDA was applied. The parallel values when LR was 

applied were 0.09 and 0.04 for "mixed" and "pure" groups respectively. Thus 

there was support6, albeit weak, for the claim that computing the weights for 

the predicted score in a sample with co-morbidity yields an artificial correlation 

between the predicted propensity to have ADD and the predicted propensity 

to have dyslexia. This claim underscores the superiority of the "pure" groups 

approach in terms of classification accuracy.  

 

Predicting dyslexia 

Contrary to the picture obtained when predicting ADD, no substantial 

advantage, in terms of classification accuracy, was gained by using 

differential weights for the predictors when predicting dyslexia. 
This conclusion is derived from the fact that half of the AUC values obtained 

when the weights were computed according to the dimensions examined in 

this study – the statistical method and the composition of the groups involved 

– were lower than those obtained when using equal weights. This is not 

surprising given the extremely small number of observations (especially when 

using "pure" groups) involved in predicting dyslexia. In light of these results, 

any attempt to compare between the statistical methods or the combinations 

of the groups involved might lead to erroneous conclusions. 

 

The quality of equal weights  
The most salient finding to emerge from this study is the fact that using equal 

weights results in an extremely high accuracy level, leaving almost no room 

for improvements via differential weights. This finding can be attributed to the 

                                                 
6 The validity of this conclusion is based on the assumption that a given disability is the same 
whether an additional morbidity exists or not.   
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large number of carefully selected predictors used. Two points should be 

raised with respect to this finding. First, even if the large number of predictors 

in the prediction equations is to be kept for future use with MATAL, it is clear 

that the quality of the selected subset of predictors, as well as of the different 

schemes of weights applied to them, needs to be examined in a sample 

different from the one in which the predictors were selected. Second, it might 

be useful to examine the possibility of reducing the number of predictors, 

thereby gaining a more efficient process.  

 

The quality of the operational weights  
The AUC values obtained by the application of the operational weights were 

lower than the AUC obtained through internal analysis, as expected. It should 

be noted, however, that the fact that they were higher than the AUC obtained 

through external analysis cannot be seen as evidence of their quality, since 

they were not subjected to such an analysis in the current study.  
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Appendix  
Results of the split sample procedure 

Table 3a 

Predicting ADD: 

AUC values obtained through LR and LDA in the two halves of the sample on 

the basis of "mixed" and "pure" groups  

 Mixed groups Pure groups 

 LR LDA LR LDA 

 1st 

sample 

2nd 

sample

1st 

sample

2nd 

sample

1st 

sample

2nd 

sample 

1st 

sample 

2nd 

sample 

For optimal 

weights 
0.983 0.981 0.973 0.971 0.994 0.994 0.982 0.987 

For split sample 

procedure 
0.935 0.904 0.954 0.929 0.947 0.878 0.959 0.935 

 

Table 3b 

Predicting dyslexia: 

AUC values obtained through LR and LDA in the two halves of the sample on 

the basis of "mixed" and "pure" groups   

 Mixed groups Pure groups 

 LR LDA LR LDA 

 1st 

sample 

2nd 

sample

1st 

sample

2nd 

sample

1st 

sample

2nd 

sample 

1st 

sample 

2nd 

sample 

For optimal 

weights 
1.00 1.00 0.988 0.992 1.00 1.00 0.991 0.993 

For split sample 

procedure 
0.981 0.980 0.970 0.950 0.968 0.893 0.934 0.980 

 
  

  


